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SUMMARY 
The paper describes and compares two different approaches to solving the equations of motion for fluid flow 
in a three-dimensional lid-driven cavity, when a higher-order approximation to convective transport is 
employed. One is based on the traditional pressure correction approach in conjunction with a pentadiagonal 
AD1 solver; the other follows a new unsegregated variable and FAS multigrid methodology. The results 
generated by both approaches, for laminar flow conditions, at Reynolds numbers of 100 and loo0 are 
compared with each other and with corresponding solutions obtained with a well known low-order 
approximation to convection. Cross-reference is also made to flow in a two-dimensional cavity at the same 
Reynolds numbers. 

KEY WORDS Unsegregated Multigrid High-order Finite-difference 

1. INTRODUCTION 

Less than 20 years ago it appeared to many in engineering circles that the numerical simulation of 
complex fluid flow phenomena offered limitless possibilities. However, it soon became apparent 
that finite difference approximations to convective transport suffered from one of two problems- 
either instability (central differencing) or numerical diffusion (upwind differencing). This apparent- 
ly insoluble dichotomy led to the creation of the well known hybrid scheme,' which still enjoys 
widespread usage today. In the mid 1970s Raithby went some way towards addressing the 
problem of numerical diffusion and proposed the skew-upwind scheme,2 but it was not until the 
end of the decade that a more satisfactory answer to the problem was found by Leonard in the 
form of quadratic upwind interp~lat ion.~ It is now generally accepted that the latter represents the 
best approximation to convective transport for problems in which profiles of the dependent 
variables vary relatively ~mooth ly .~ .  It would be naive to pretend that quadratic upwind 
interpolation represented a cure for all ills; indeed, it has its own shortcomings, namely a 
characteristic lack of boundedness. Fortunately, this does not appear to present a problem for the 
test case considered here and the reader is referred elsewhere4 for a more detailed description of 
and possible answer to this rather undesirable feature of higher-order schemes. 
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During the above period, the SIMPLE algorithm,6 and lately its variants,' has emerged as 
arguably the most successful solution algorithm for simulating fluid flow problems. The 
continuum equations governing such flows are solved numerically using a segregated or pressure 
correction approach. This, together with a tridiagonal matrix algorithm (TDMA) employing an 
alternating direction implicit (ADI) procedure, has resulted in an extremely efficient solution 
strategy that has reigned more or less supreme. However, an obvious drawback to this 
methodology is that it weakens the coupling between velocity and pressure and can impede 
progression towards a converged solution.' The cost of obtaining solutions depends strongly on 
how well the solution procedure treats the inter-equation coupling. In recent studies of Gaskell 
and WrightY, l o  it has been shown that implementation of Vanka's" symmetric coupled 
Gauss-Seidel (SCGS) technique represents a first step in dealing with this problem. The 
momentum and continuity equations are retained in their original form-a pressure correction 
procedure is not required and the coupling between the equations is preserved. Similarly, the 
recent rapid advance in state-of-the-art computational fluid dynamics, in the form of multigrid 
methods acting as convergence accelerators, is now beginning to challenge the superiority of the 
traditional solver.y- 

Section 2 describes the test problem and governing equations of motion. This is followed by a 
detailed description of the numerical procedures adopted, in particular the SCGS smoothing 
technique and the multigrid algorithm employed, in Section 3. The results are compared in 
Section 4 and conclusions drawn in Section 5. 

2. TEST PROBLEM AND GOVERNING EQUATIONS 

The three-dimensional lid-driven cavity, for laminar flow conditions, represents an ideal test 
problem for evaluating the relative merits of the solution strategies outlined below. In the cubic 
cavity shown in Figure 1 the velocities are equal to zero on all faces except in the xz plane for y = 0, 

T y'v 

- x,u 

Figure I .  Three-dimensional lid-driven cavity problem with the plane of symmetry shown 
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where w = 1. The equations governing the flow, written in non-dimensional form, are 

(1) 

au av aw 
ax a y  aZ - + - + - = O .  (4) 

A primitive variable (u,u, w,p) and control volume formulation has been chosen in line with 
current engineering practice, although in terms of multigridding it is not necessarily the most 
desirable option for the chosen test problem; also the use of a staggered grid arrangementI2 
complicates multigrid interpolation procedures. 

3. NUMERICAL PROCEDURES 

3.1. Discretization 

The key to the accurate simulation of convection-dominated flows depends upon the method 
adopted to discretize the governing equations of motion, in particular the troublesome non-linear 
convective terms. The characteristic lack of boundedness associated with high-order approxi- 
mations to convection has meant that the hybrid scheme’ has, on the whole, remained preferable 
for the elucidation of problems which contain steep gradients in one or more of the dependent 
variables. The desire of computational fluid dynamicists to predict evermore complex turbulent 
flows has more-or-less sealed their fate in this respect. Fortunately, the test problem considered 
here does not feature sharp changes in gradient for the velocity field, thus allowing the use of a 
higher-order approximation to convection; namely, Leonard’s quadratic upward interpolation for 
convection kinematices (QUICK). The debate surrounding the choice of a suitable approximation 
to convective transport is far reaching and fraught with controversy. The theme of this paper 
precludes us from expanding further; however, the reader’s attention is drawn to a recent 
publication by Gaskell and Lau4 in this area. 

The diffusion terms contained in the governing equations are approximated using central 
differencing in line with standard practice. 

3.2. A pressure correction IPDMA formulation 

Solution of the pressure and velocity $fields. The SIMPLE algorithm, attributed to Patankar and 
Spalding,6 represents a remarkably successful implicit solution procedure for determining the 
coupled velocity and pressure fields associated with fluid flow problems. The method itself is 
extremely well documented and as such it is not reviewed here; rather the reader is referred to the 
relevant text.13 There is, however, one important feature of our approach that differs from that of 
Patankar and Spalding, namely that the pressure correction is over- rather than under-relaxed. 
This has the desired effect of rendering pressure correction values, between iterative cycles, 
smaller. A more detailed explanation of the reasons behind this modification to the existing 
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algorithm can be found e1~ewhere.l~ It is sufficient to state here that in common with accepted 
practice the following steps are taken when applying the SIMPLE algorithm: 

(i) A pressure field is assumed a priori. 
(ii) This pressure field is then used to give the corresponding approximate velocity field. 
(iii) The velocity and pressure fields are corrected if the former does not satisfy the continuity 

equation. 
(iv) Steps (ii) and (iii) are repeated until a converged solution is obtained. 

Solution of coefflcient matrices. When an AD1 procedure is adopted, higher-order finite difference 
approximations to convective transport often result in a coefficient matrix with a bandwidth of 
five in the chosen co-ordinate direction, unlike the hybrid approximation which generates a 
matrix with a bandwidth of three. The latter is ideally suited for use witlra TDMA. Although a 
pentadiagonal matrix algorithm (PDMA) represents the obvious choice of solver in the former 
case, this has not proved popular. It has become common practice5. to recast the QUICK 
scheme, for example, in such a way that a TDMA can be used. There are of course disadvantages 
to following such a procedure: 

(i) The finite difference equations are not solved 'exactly' on the current line-nodal points are 
dumped to the source. 

(ii) The resultant scheme is invariably more complex following reformulation; programming 
effort is increased. 

(iii) Reformulation of schemes such as QUICK and the dumping of terms into the source must 
contribute to a decrease in the overall stability of the coefficient matrix system. 

There are, however, some authors who have opted to use a PDMA in conjunction with higher- 
order discretization schemes, Agarwal,16 Galpin et a l l 7  and Seyed et ~ 1 . ' ~  for example, the latter 
having expressed their doubts about the robustness of the PDMA as a solver. It is arguable that 
these doubts may be premature, since no definitive evidence is given for this assertion. Some of the 
discretization schemes examined therein are of sufficient complexity to mask any desirable 
features of the solver. 

The PDMA has the combined advantage of simplicity and a low storage requirement. This 
solver requires no special reformulation of higher-order discretization schemes or the need to 
dump terms into the source. 

If the ( j ,  k)th values of a dependent variable 4 along an ith grid line are fixed at their previous 
iterative value, then the set of quasi-linear algebraic equations thus generated can be written as 

( 5 )  - Ai- 2 4 i -  2 - Ai- 1 4i- 1 + Ai4i  - Ai+ 14i+ 1 -Ai+ 2 4i+ 2 = Si. 

The coefficients in A contain both convective and diffusive fluxes, and Si is a source term such that 

S i = x A , 4 , + S ,  m = j + l ,  j + 2 ,  kkl ,  k + 2 .  

Applying (5) at all nodal points 5 along this grid line results in a pentadiagonal coefficient matrix 
which can be easily factorized by LU-decomposition to generate the following recursive 
procedure: 

where 
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with 
c( = -(Ai+z)c, 

P<= - (A i+ l )<  - a $ - z ,  

Y e  = (Ail, - aci, - - B, 8, - 1 9 

6, = - ( ( A i -  I), + @c- l)/Y,, 

2, = - (4 - 2 ) c / Y [ .  
For a solution over the domain of interest, the above procedure is applied to each of the i grid 

lines in turn, the most recently calculated values on the previous grid line being used. After one 
sweep the procedure is applied along the j and k grid lines. This AD1 procedure can be repeated 
any number of times to achieve a desired level of accuracy for the solution of one dependent 
variable. 

3.3. An unsegregated solution/FAS multigrid formulation 

The smoothing technique-symmetrical coupled Gauss-Seidel. If one’s ultimate goal is to enhance 
convergence with a rnultigrid approach, it is important to realize from the start that any benefits to 
be derived are dependent on the smoothing technique employed. If an inefficient technique is used, 
the advantages of multigrids can be completely annulled. Attempts have been made to adapt 
pressure correction techniques to multigrids, but there are problems associated with this. ’9 2o 

Similarly, other authors have implemented a multigrid technique for either the pressure equation 
or the velocity equations. The symmetrical coupled Gauss-Seidel technique’ used here 
solves for u, v,  w and p simultaneously, thereby maintaining the coupling of the equations. It is 
simple and offers the advantage of a low operation count and minimal storage requirement. As a 
first step to assessing the use of an unsegregated solver with a multigrid technique, it is easily 
implemented and reasonably efficient. 

For each control volume six velocities and one value of the pressure are updated simultaneously 

This matrix is doubly bordered, diagonal and sparse, and can be solved ‘exactly’ using a form of 
LU-decomposition. Relaxation of the updates is required owing to the non-linearity of the 
algebraic equations and the necessary use of old values for u, v,  w and p when evaluating the matrix 
coefficients and the residuals. The velocity updates are multiplied by a factor a, and the pressure 
updates by a2 once they have been calculated. The choice of a1 and a2 is not absolutely critical, but 
it does depend upon the value of the Reynolds number. QUICK is seen to exhibit a greater 
sensitivity to the value of these relaxation factors (in particular al) than is the case with hybrid 
discretization.’ This set of equations is solved for each control volume, first in the direction of 
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increasing i ,  then j and then k .  As a consequence of this each velocity is updated twice. Vanka 
observed that this ensured the stability which a single update method lacked. 

Solutions obtained by considering alternative cells only, in two separate sweeps, were also 
investigated, but this approach was found to offer no obvious advantages, particularly with the 
QUICK discretization which generates a large computational molecule. 

The rnultigrid scheme. The central philosophy behind multigridding is that errors of wavelength 1 
are most easily eliminated on a mesh of size h when 1 -.h. Once this error has been smoothed, on a 
given grid the convergence rate decreases rapidly. In view of this a hierarchy of grids of different 
mesh sizes is used to solve the fine grid problem (see Figure 2). A representation of this problem js 
set up on coarser grids and these are used to calculate corrections to the fine grid solution. With 
multigridding one has a very fast solver for systems of algebraic equations, since relaxation on 
each level is extremely efficient. Each grid is very effective at eradicating a particular wavelength 
component of the error. The efficiency of the method should be independent of the shape of the 
solution domain, the form of the boundary conditions and the smoothness of the solution. Within 
this overall concept there are several different strategies that can be adopted. 

The multigrid strategy. The problem considered here is highly non-linear and can be solved in one 
of two ways: 

(a) by performing a global linearization using a Newton method followed by the application of 

(b) by employing a full approximation storage (FAS) algorithm. 

The latter approach is preferable and was therefore adopted here. Further details of the non- 

a linear multigrid, or 

linear multigrid approach are readily accessible e l~ewhere .~~  * 

0 COARSE GRID 
/ LI IY I \ Y / 

/ I  I \  fl / I  I \  n 
I I  

Rest;i;tion 1 1 1 \ Prolongation 
/J / I  I \  

/ I  I \  

Figure 2. Multigrid nodal configuration showing coarse to fine (prolongation) and fine to coarse (restriction) data transfer 
between grids: 0, coarse grid scalar; e, fine grid scalar; a, coarse grid velocity, 4, fine grid velocity 
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Several strategies have been proposed and implemented for cycling between grids in order to 
smooth errors efficiently.” However, the one employed here is geared to home in on the grid with 
the largest residual, starting the smoothing cycle there. The reasoning behind this approach is that 
this grid will be the most efficient to work on in terms of smoothing errors. It has been applied very 
effectively to a number of problems by Falle and Wilson.” Therefore in performing one FAS 
multigrid cycle the following steps are taken: 

(i) The equations are set up on all grids. 
(ii) The residual of the solution of the restricted problem on each grid is calculated. The level 

with the highest residual is selected for smoothing. 
(iii) The solution is smoothed on this grid until the error has been reduced by a factor y. This 

factor can be varied to give a fast rate of convergence. In the present work y is set to 0.5 on 
the current finest grid and 0.1 elsewhere. The final and initial solutions are used to calculate 
a correction. 

(iv) This correction is prolonged onto the next finer grid and added to the current solution 
there. This solution is smoothed until the error has been reduced by a factor y. 

(v) Steps (iii) and (iv) are repeated until the finest grid has been corrected and smoothed. 

Interpolation, boundary conditions and convergence criterion. In all cases information is trans- 
ferred between grids using linear or bilinear interpolation. When interpolating near boundaries, 
no boundary values are used; instead a zero derivative is imposed. In order to improve the 
accuracy of the correction in this situation, cells adjacent to the boundary are updated after the 
correction ha6 been applied and before the first current fine grid iteration. It has been observed 
that this measure can reduce CPU time by up to 30%. 

Unlike Vanka we have made use of the symmetry property of the problem; solving for one half 
of the cavity and applying a zero-derivative boundary condition for v and w, and a zero-value 
condition for u at the symmetry plane shown in Figure 1. Care must be taken when solving with 
von Neumann boundary conditions. In the present work this condition is only applied on the 
current fine mesh, as this is the only place where a solution of the full partial differential equation is 
sought. The problem is solved on coarser grids by imposing a Dirichlet boundary condition, 
defined in terms of the current fine grid and its associated residuals. In the present study the first- 
order upwind approximation is applied at the boundaries of the solution domain and the 
computational grids quoted in the text refer to internal nodes only. 

The results presented in the next section are for converged solutions where the residual norm 

is less than 

4. RESULTS 

Before proceeding to analyse the results for the cubic cavity, it is worthwhile collapsing the 
problem to a computationally less expensive scenario, namely a two-dimensional flow situation 
(x = u = 0 in Figure 1). Table I gives a comparison between the various solution strategies, for 
flows at Reynolds numbers of 100 and 1000, obtained with different mesh densities. The first thing 
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Table I. Solution times (in CPU seconds on an Amdahl 5860) for a square 
cavity obtained using SCGS/non-multigrid (SCGS), SCGS/multigrid (SCGSM) 
and SIMPLE/PDMA (SP) solution strategies when the QUICK scheme is 
employed. Results obtained for a multigrid version of the hybrid scheme are 
included as a comparison. Bracketed terms represent projected values based on 

equation (9) 

Re = 100 
Mesh SCGS SCGSM SP 

iN x j N  QUICK Hybrid QUICK QUICK 

4 x  4 0.05 0.06 0-07 - 

8 x  8 0.4 1 034 0.39 0.36 
1 6 x  16 4.59 1.54 1.69 3.12 
32 x 32 59.06 6.46 7.4 1 28.20 
64 x 64 641.09 22.24 22.53 366.00 

128 x 128 7001.51 69.5 1 69.67 3 142.80 
256 x 256 (76500.00) 31 1.47 244.47 (27000-00) 

R e =  1000 
Mesh SCGS SCGSM SP 

iN x j N  QUICK Hybrid QUICK QUICK 
- 

4 x  4 0.07 0.05 0.13 - 

8 x  8 1.49 0.35 1.27 0.92 
16 x 16 16.44 2.37 7.78 3.40 
32 x 32 87.27 14.56 35.80 19.18 
64 x 64 829.25 90.39 149,97 267.00 

128 x 128 8559.77 358.23 546.43 2371.20 
256 x 256 (88000.00) 1127.27 2 124.24 (21000~00) 

to notice is that the SCGSM solution strategy results in a relationship between CPU time and 
number of grid points, N ,  of the form 

CPU c( NP, (9) 
where p N 1. This is what one would expect to attain with a multigrid method. Secondly, SCGS 
without multigridding is no match for the traditional SIMPLE with PDMA (SP) solution 
strategy, at  aii mesh densities. Similarly, at  low mesh densities, particularly for Re = 1000, SP out 
performs SCGSM, but this trend is dramatically reversed as N increases. For example, at  Re = 100 
a solution is found on a 64 x 64 grid using SCGSM in less time that it takes to find the solution on 
a 32 x 32 grid with an SP approach. 

It would appear from the evidence presented in this table that as the Reynolds number is 
increased, the superiority of the SCGSM over the SP solution strategy only becomes apparent at 
higher mesh densities. This is only a speculative assertion, and flow at higher Reynolds number 
will need to be examined before any definite conclusion can be drawn. Replacing the point-by- 
point SCGS solver with a line-by-line technique should improve this trend still further. Similarly, 
the use of quadratic interpolation for the transfer of information between grids may enhance the 
performance of the multigrid technique. Figure 3 shows plots of the vorticity and streamfunction 
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(a) (bl 
Figure 3. (a) Streamfunction and (b) vorticity contours for flow in a two-dimensional lid-driven cavity at Reynolds 

number 1O00, obtained on a 256 x 256 mesh with QUICK 

(a 1 

............... ................ 

Figure 4. Velocity vectors obtained with hybrid for Reynolds number 1ooO: (a)x=0.125; (b) x=O.5; (c)z=O.375; 
(d) z = 0.5; (e) z = 0.75 
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............... ............... ............... ............... 
a . . * . , , . * * * * * , ,  ............... 

> . , A  ..,.. I , . , , .  

at a Reynolds number of 1000 obtained on a 256 x 256 grid. These results are in excellent 
agreement with the predictions of other authors; see, for example, Ghia et aLZ3 

Focusing now on the three-dimensional cavity, it can be seen that solutions are obtained for a 
large number of grid points in reasonably fast times. The main features of the flow are clearly 
resolved on a 32 x 32 x 16 mesh and at a Reynolds number of 1000 are in good agreement with 
those of other authors' ' (Figures 4 and 5). However, as one would anticipate, the hybrid solution 
is much more diffuse, failing to adequately capture the corner eddy at z =0.5 (Figure 4(d)). In 
Figure 6 the velocity predictions for u and w at the central plane on x = 0 5  are presented. It can be 
seen quite clearly that although the results obtained with both schemes at a Reynolds number of 
100 are comparable, the hybrid prediction differs considerably from that given by the QUICK 
scheme at a Reynolds number of 1000-highlighting once again the diffuse nature of the former. 

In Table I1 a comparison is made between the SP and SCGSM solution strategies for both the 
QUICK and hybrid schemes, again for flow at Reynolds numbers of 100 and 1000. Once again it is 
evident that considerable (although less dramatic) savings in CPU time are achieved using the 
SCGSM solution strategy. Notice that for the three-dimensional computations there is no switch 
over in benefit of use between the SP and SCGSM approaches; that is, the latter is always faster. 

(a I fhl 

(C I 
3 r . . . . . . . r . . . . r r  ................ 

Figure 5. Velocity vectors obtained with QUICK for Reynolds number 1OOO: (a) x=0.125; (b) x=0 ,5 ;  (c) z=O.375; 
(d )z=05;  (e) z=O.75 
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4 

(cl  

Figure 6. Velocity profiles at the central plane (x=0.5) for QUICK (full curves) and for hybrid (broken curves): 
(a) Re = 1000, w on the line z =0.5; (b) Re = 1000, u on the line y =0.5; (c) Re = 100, w on the line z =0.5; (d) Re = 100, u on the 

line y = 0.5 

5. CONCLUDING REMARKS 

Both of the solution strategies examined give accurate predictions for the flow under consider- 
ation when used in conjunction with the QUICK discretization scheme. No difficulties were 
experienced with using a PDMA to obtain solutions in two and three dimensions using the 
SIMPLE approach. The present study therefore lends support to and recommends the use of a 
PDMA to solve for the coefficient matrices which occur as a result of employing higher-order 
approximations to convection for the solution of recirculating fluid flow problems. 

The FAS multigrid/SCGS approach results in economically more viable solutions, particularly 
when a fine mesh is used. It is believed that even greater improvements in CPU time can be 
achieved by replacing SCGS with a different smoothing technique and by making use of quadratic 
rather than linear interpolation when transforming information between grid levels. Both these 
options are currently under investigation. 
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Table 11. Solution times (in CPU seconds on an Amdahl 5860) for a cubic 
cavity obtained using the SCGSM and SP solution strategies in conjunction 
with the hybrid and QUICK discretization schemes. Bracketed terms represent 

projected values based on equation (9) 

SP 
- 

Re= 100 SCGSM 

Mesh N Hybrid QUICK Hybrid QUICK 

- - 4 x  4 x  2 0.17 0.17 
8 x  8 x  4 1.37 1.72 - - 

16x 16x  8 1092 14.02 64.00 94.10 
32 x 32 x 16 88.31 86.56 1061.00 1630.00 
64 x 64 x 32 659.18 610.18 ( 17600.00) (28000.00) 

Re = 1000 SCGSM SP 

Mesh N Hybrid QUICK Hybrid QUICK 

4 x  4 x  2 0.17 0.17 - - 

8 x  8 x  4 1.77 8.79 - - 

16x 16x  8 17.19 60.86 44.3 1 75.20 
32 x 32 x 16 212.75 446.93 943.12 143001 
64 x 64 x 32 3350.81 3383.26 (20 100~00) (272OO.00) 
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APPENDIX: NOMENCLATURE 

coefficient of solution matrix 
central processing unit 
number of nodes in x, y, z directions respectively 
total number of nodes 
pressure 
residual in the u-equation 
residual in the v-equation 
residual in the w-equation 
residual in the continuity equation 
Reynolds number 
source term 
source term at node i 
velocity components in x, y, z directions respectively 
Cartesian co-ordinates 
dependent variables 
second norm 
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Superscripts 

u, u, etc. 

Subscripts 

i, j, k,  i -  I, j -  1, k -  1, etc. denote values at nodal points 

denotes belonging to 
, denotes updates 
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